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Abstract-A numerical method for computation of macrosegregation in a solidifying alloy is presented. 
The formulation relies only on the fundamental conservation laws for mass, momentum, heat and solute, 
and the thermodynamical relations governing phase change. The entire time-dependent process is simulated, 
up to complete solidification. The method is applied to the case of an ironxarbon system solidifying in a 
two-dimensional rectangular mould, cooled from the sides. The thermal and solutal convection that arises 
during solidification is computed. The evolution of the melt fraction in the mould, and the final distribution 

of carbon after solidification, is reported. 

1. INTRODUCTION 

DURING solidification of alloys, it is well known that 
a so-called mush, a two-phase region containing both 
solid and liquid metal, often forms on the cooled wall, 
instead of a plane solidification front. It has long been 
realized [ 11, that macroscopic convection through the 
mush during solidification is the primary cause of 
macrosegregation. When a melt is poured into a 
mould and cooled from the sides a strong thermal 
convection is immediately set up in the completely 
molten region. Another mechanism is that the melt in 
the mush is often enriched in solute as the sol- 
idification proceeds, and this may then cause a macro- 
scopic solutal convection through the mush. Both of 
these convective motions will be active in redis- 
tributing the solute and thus in producing macro- 
segregation. 

This paper presents a numerical computation of the 
time-dependent solidification of an alloy, with the aim 
of simulating the entire process to gain a better under- 
standing of macrosegregation. The solidification of an 
iron+arbon system is presented. The melt is cooled 
from the sides, and the top and bottom are insulated. 
The process is followed to complete solidification so 
that the resulting macrosegregation is obtained. 

If convective and diffusive transport of solute 
through the mush is negligible, the evolution of the 
composition of the melt and the solid is easily obtained 
from either Scheil’s equation or the so-called lever rule 
[2]. An important early study of macrosegregation is 
that by Flemings and Nereo [ 11, who studied the slow 
convection induced by solidification shrinkage and 
computed the corrections to the Scheil equation and 
the lever rule. 

Many numerical computations of a solidifying alloy 
have been presented in the literature, such as Voller 
and Prakash [3], and Flood and Hunt [4]. However, 
in the vast majority of these reports, an algebraic 

relation between temperature and melt fraction in the 
spirit of a Scheil equation or a lever rule is utilized. 
Such a relation is strictly true only when macroscopic 
transport of solute is negligible. Such computations 
may thus predict the evolution of melt fraction and 
temperature during solidification, but will not give 
any information about the distribution of solute in 
the solidified ingot. 

Hills et al. [5] presented a fairly complete set of 
equations allowing diffusive and convective transport 
of solute and heat. Using such a formulation, Worster 
[6] managed to obtain very instructive semi-analytic 
solutions to the problem of solidification with mass 
diffusion but without convection. 

Bennon and Incropera [7], and Beckermann and 
Viskanta [8], using the same numerical method, solved 
for composition and temperature separately and were 
able to predict a true macrosegregation. Their numeri- 
cal technique is somewhat different from that pre- 
sented here, the relative merits of the two approaches 
will be discussed below. Also we have computed sol- 
idification of metals, while they computed sol- 
idification of various salts with which they also made 
experiments. 

This paper is planned as follows : the mathematical 
problem is formulated in Section 2, then the numerics 
are discussed briefly in Section 3. The solidification of 
an ironxarbon system has been computed and the 
results are presented and discussed in Section 4. Sec- 
tion 5 contains concluding remarks. 

2. FORMULATION 

In this section the mathematical problem to be 
solved is formulated. In this we follow Hills et al. [5]. 
The solidification process is governed by the balance 
of momentum and the conservation of heat, solute 
and total mass. The primary unknowns are : II, p the 
mean melt velocity and pressure ; T the temperature ; 

217 



218 G. AMBEKG 

half width 
height 
specific heat 
composition 
Courant number 
mass diffusivity 
coefficient in equation (2) 
parameter in equation (2) 
solutal expansion coefficient 
permeabiiity 
average heat conductivity in mush 
partition ratio, c’,/c, 
latent heat of fusion 
pressure 
Prandtl number 
prescribed heat flux at the side walls 
Rayleigh number 
temperature 
melting temperature of pure iron 

7;(c, ) fiquidus temperature 
u mean melt velocity 
Y,, Y2 parameters in equation (3). 

Greek symbols 
Ix’ thermal expansion coefficient 
l- slope of liquidus line 
E numerical parameter in equation (14) 

iJ viscosity 

P density 

X fraction of volume occupied by melt. 

Subscripts 
0 reference quantity 
i iaitial values 
1 liquid-phase quantity 
m mixture quantity 
s solid-phase quantity. 

c, , c,, cm the compositions of liquid, solid and mixture, 
respectively; X the fraction of volume occupied by 
melt. 

We consider a two-dimensional rectangular mould 
with width 2a and height b. The side walls are cooled, 
and the top and bottom are insulated, The centreline 
x = a is a line of symmetry so that only the domain 
0 -=z x < a, 0 < y < b needs to be computed. A frame 
of reference with horizontal coordinate x and vertical 
coordinate JJ, opposite to gravity, will be used as 
shown in Fig. 1. 

During the solidificatron three regions are dis- 
tinguishable in the mould, containing solid, mush and 
liquid metal, respectively. The balance of linear 
momentum, as weil as all other equations, is expressed 
as an equation which is valid in all three regions, so 
that no explicit tracking of the front of the mushy 
zone is necessary. 

where u = (u, v) denotes the fluid velocity (m s- I). In 
the mush it is to be interpreted as an average over 
the pore spaces. p is the pressure (N rn”-“‘), T the 
temperature (“C), cr the weight fraction of solute in 
the melt. The fluid viscosity is denoted by p (kg m ’ 
s- ‘1, and p. (kg m- ‘> is a reference density taken as 
the initial density of the melt. -9 is the grav~tationaf 
acceleration (9.81 m s- ‘). 

The melt density p depends on temperature T and 
composition c 1. Correlations for the iron-carbon sys- 
tem have been given by Olsson [9] 

Expressed in the fluid velocity, the balance of linear p = po(l +rw’(T- 153rYC)+,Pc,) 

i 
gravity 

FE. 1. The geometry of the mould. 

(1) 

where 

Vat ues of the parameters d, e, f are given in Table 1~ 
The size of the dendrites is small, typically 0.1 mm, 

so that the mush may be treated as a porous medium. 
H(X) (m2) is the permeability of the mush, defined 
as is common in the theory of porous media. The 
permeability is a function of the volume fraction melt 
(or porosity) X. It may be estimated crudely as the 
square of a typical dendrite spacing. In this paper we 
use a correlation for the function H(X), appropriate 
for a metal mush, which has been given by West [lo] : 
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Table 1. Physical properties of an iron-carbon alloy 

p viscosity 
p0 density 
C specific heat 
L latent heat of fusion 
k, heat conductivity in liquid 
k, heat conductivity in solid 
D mass diffusivitv 
To melting temperature of pure iron 
r slope of liquidus line 
k, partition ratio 
d coefficient in equation (2) 

; 
parameter in equation (2) 
solutal expansion coefficient 

Y, parameter in equation (3) 
Y, parameter in equation (3) 

694~lO-~Nsm-* 
6940 kg m- 3 
753 J kg-’ “C-’ 
2.72 x lo5 J kg- ’ 
30 W m-’ “C-’ 
60 W m-’ “C’ 
1x10-9m’s-’ 
1536°C 
7800°C (wt frac)- ’ 
0.42 
-4.2 x lO-4 
0.55 
-8 
6.4 x IO- I3 mz 
8.8 x lo- ” m* 

H(X) = Y,.K,+Y,.K, 

where 

K, = x2 

K, =OifX < l/3 

Kz = (1 -x) l/3(3+&-3&-3)) 

if x > l/3. (3) 

Values of Y, and Y, are given in Table 1. In the 
completely molten region where the volume fraction 
of melt x is 1, H(X) is infinite so that the last term on 

the right-hand side of equation (1) vanishes, leaving 
the usual Navier-Stokes equation for fluid flow. 
Whenever a mush appears, so that x decreases below 
1, H(X) very rapidly decreases to very small values, 
typically less than 10e8 m’. Then the velocities will 
be very much smaller and the terms on the left-hand 

side of equation (1) are negligible. The remaining 
terms on the right-hand side are in fact the Darcy law, 
known to hold in porous media. We have not included 
the dependencies of melt fraction x in equation (1) 
that would make this equation valid for a mush so 
thin that the two left-hand side terms, representing 
inertia and macroscopic shear, are important. Since 

the permeability is very low this does not seem to 
occur, and so it is not a serious limitation to use the 
form given in equation (1). 

In formulating equation (1) the standard Boussinesq 
approximation has been invoked, in assuming that 
density variations are important only in the buoyancy 
terms (the second term on the right-hand side). 

The solid and liquid metal are assumed to be incom- 
pressible, and the solidification shrinkage is neglected. 
in accordance with the Boussinesq approximation 
used in the momentum equation. With this approxi- 
mation the conservation of total mass reduces to 

V*(xu) = 0. (4) 

The time required for thermal diffusion over a pore 
size distance may be estimated and is found to be very 

short. Any temperature variation with a length scale 
of the same order of magnitude as a dendrite spacing 

is thus quickly smoothed out and so, in the mush, the 
temperature is essentially the same in both the liquid 
and solid phase. Thus the conservation of heat can 
be formulated in terms of an equation for a single 
temperature, valid throughout the liquid, mushy and 
solid regions 

,,,(~.,“.VT) = v.kvT-p,,Lg. (5) 

Here C is the specific heat of the metal (J 
kg-’ 'C- ‘) and L the latent heat of fusion (J kg-‘). 
k (W m-’ ‘C-‘) is the heat conductivity, which is 
taken as an average of the heat conductivity in the 
solid and liquid phases : k = xk, + (1 - x)k,, where 
k,, k, are heat conductivities in liquid and solid metal, 
respectively. 

Conservation of solute is formulated in a way simi- 

lar to equation (5). However, mass diffusion is much 
slower than heat diffusion, especially in the solid, so 
the composition of the solid in a dendrite arm is not 
necessarily in equilibrium with the composition of the 
interdendrite liquid. Two different approximations 
are commonly used : either the assumption of a rapid 
diffusion in the dendrites, so that the composition is 

always essentially uniform across a dendrite arm, or 
the opposite, no diffusion at all in the solid. The com- 
position at the surface of the dendrite is then deter- 
mined by the composition of the interdendrite liquid 
alone and is completely unaffected by the composition 
inside the dendrite. If macroscopic transport of solute 
is neglected, the former leads to the lever rule and 
the latter to the Scheil equation. In the ironcarbon 
system that is considered here, the appropriate 
approximation is that of rapid diffusion in the solid. 
In the liquid, the mass diffusivity is always assumed 
to be large enough, so that the composition is prac- 
tically uniform over a dendrite spacing. 

However, since the solubility of the solute is nor- 
mally different in the solid and the liquid state it is 
necessary to work with the composition of the liquid 
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cr. and the composition of the solid c, separately. At 
a point in the mush these will then mean the almost 
constant values of the alloy content in the melt filling 
a dendrite spacing, or the solid in a dendrite arm, 
respectively. It will also be practical to introduce the 
net composition of the solid-liquid mixture 

(‘m = xc, f(l -x)c:. (6) 

Considering the conservation of mass of the solute 
the following equation is now easily obtained : 

Note that, in the absence of convection and 
diffusion. this equation merely states that cm is 
constant, which is the so-called lever rule. It should 

also be pointed out that, even though mass diffusivity 
D is large enough to smooth out variations on the 
dendrite length scale, mass diffusion is still small com- 
pared to convective transport on the macroscopic 
scale. Consequently the precise form of the term on 
the right-hand side is not important. 

The solidification of an alloy is to a large extent 
governed by the phase diagram, i.e. the relations 
between temperature and composition at phase 
boundaries. This may be quite complicated, with 
phase transitions between different crystal structures. 
etc. However, for the transition between solid and 
liquid in an iron-carbon system, the relation between 
temperature and composition of the melt (liquidus 
line) may be approximated as a linear function 

T= T,(c,) = T,,-I-<,, (8) 

where ILr, is the melting temperature of the pure metal 
and the constant of proportionality T is in units of’ C 
(wt frac) ’ 

The solubility of the solute is normally different in 
the solid and the liquid state so that c, and c, are 
related according to the partition ratio k, 

c, = k,c, (9) 

The relation between temperature and composition 
of the solid (solidus line) follows from equations (8) 
and (9), and has thus also been approximated to be 
linear. 

Relations (8) and (9) must hold on interfaces where 
solid and liquid meet. i.e. on dendrite surfaces in the 
mush. Since temperature and composition variations 
are small over distances of the order of dendrite spac- 
ing, they must indeed hold throughout the mush. 

Equations (l)-(9) must be supplemented by bound- 
ary conditions for u, T and c,. The centreline is a line 
of symmetry so only the left half of the mould is 
computed. All sides of the mould are assumed to be 
solid, so the appropriate boundary conditions for u 
are 

u=O at x=0 and ~*=0,h 

^> 
U=c”=O 

C’X 
at .Y = a. (IO) 

The top and bottom faces arc insulated. The mould 

is cooled by removing uniformly a given amount of 
heat per unit time from the left- and right-hand sides. 
The boundary conditions on temperature are thus 

(11) 

We assume that no solute is lost through the walls, 
and this is ensured if the normal gradient of c,, is 

prescribed to be zero at the wall and the line of sym- 
metry 

--F = 0 at .Y = 0, u 
?s 

(12) 

Initially the alloy in the mould is assumed to be at 
rest, to be isothermal and of uniform composition, i.e. 

u = 0. T = T,. c’, = c I? x=1 at t=O (13) 

where T, is the initial temperature and c, the initial 
composition. 

The seven equations (l)-(9), together with bound- 
ary conditions (lo)-(12) and the initial conditions 
(13), now completely specify the seven unknowns u, p, 
T, c,, c, , c, and x. The methods used for solving the 
system are described in the next section. 

3. NUMERICAL METHOD 

A computer program that solves the equations 
given in the previous section in a two-dimensional 
rectangular domain has been developed. The com- 
putations are time dependent, and the solidification 
process is simulated from completely molten to com- 
pletely solid. The equations have been discretized 
using a finite volume approach. 

As is often done in phase change computations [3. 
71 care has been taken to formulate equations that are 
valid throughout the domain, in both solid, mushy 
and liquid regions. It is then possible to use one simple 
net when discretizing the equations and. provided that 
the discretizations are done in a properly conservative 
manner, all continuity conditions at interfaces 
between solid and mush, and mush and liquid, are 
satisfied automatically. 

In choosing the scheme for time discretization. it 
was observed that all equations except the phase dia- 
gram relation (8) allow a simple explicit time stepping. 
Equation (8) however algebraically couples two of the 
unknowns at the new time level in an unclear manner, 
in fact making the mathematical character of the 
entire system obscure. Therefore, it was decided to 
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replace equation (8) by the following seemingly arti- 
ficial relation : 

Here T,_ is the liquidus temperature as defined in 
the second equality of equation (8). This equation 
now allows a simple way of determining the melt 
fraction x at the new time level : the right-hand side is 
evaluated using available values for temperature and 
composition, and the new melt fraction is readily 
obtained from the discretized left-hand side. If x tends 
to increase beyond 1 or decrease below 0, the new 
value of x is taken to be 1 or 0, respectively. This 
means that T is then allowed to differ from T,, which 
of course is quite correct in the solid (x = 0) or liquid 
(x = 1) region. 

The numerical parameter E should be chosen small, 
so that any deviation of T from T, is magnified and 
results in a rapid melting or freezing that restores T 
to TL. A simple estimate shows that the error in equa- 
tion (8) should be proportional to E, and this is also 
confirmed numerically. By choosing a small enough 
value of E, equation (8) can thus be satisfied to any 
desired degree of accuracy. The actual error is easily 
monitored in the computations by comparing T and 
T,_ in the mush. 

It should be pointed out that equation (14) may be 
seen as a crude way of allowing for a non-equilibrium 
phase transition with undercooling taking place. We 
have not attempted to give a physical interpretation 
of E. nor to establish a numerical value that would 
describe undercooling, so E should be regarded as a 
completely numerical parameter. However, it is 
reassuring that this numerical technique of using 
equation (14) instead of equation (8) mimics, quali- 
tatively at least, a reasonable physical phenomenon. 

The solution of the entire system, equations (l)- 
(7). (9) and (14), proceeds as follows: given tem- 
perature and composition at the previous time level, 
the new melt fraction is obtained explicitly from equa- 
tion (14). From the new melt fraction value. the 
amount of released latent heat of fusion in the heat 
equation (5) and solute rejected from the solid in the 
composition equations (6), (7) and (9), are computed 
and temperature and concentrations may be obtained 
at the new time level. Using the new temperature. 
composition and melt fraction, a pressure and velocity 
field at the new time level is obtained from equations 
(1) and (4). All unknowns have then been computed at 
the new time level, and the procedure may be repeated. 

Second-order accurate discretizations of spatial 
derivatives were used throughout. The velocity field 
is solved from equations (1) and (4) using the well- 
known pressure correction method [ 11, 121. The non- 
linear convective term in equation (1) is discretized in 
a special manner to allow a reasonably large time 
step and to suppress non-physical oscillations in the 
solution [13]. In the heat equation (5) the diffusive 
term is treated implicitly, also to avoid a severe limi- 

tation of the time step size. Due to the very small value 
of mass diffusivity it is important to use a method that 
is stable for zero mass diffusivity when solving the 
concentrations from equations (6), (7) and (9). This 
is achieved by using an upwind discretization of the 
convective term in equation (7), as in the dis- 
cretization of equation (1) [ 131. 

The overall stability of the entire scheme is governed 
by a Courant number Co = LJ,,,,, dt/dJl, II,,,,, being the 
maximal velocity in the domain and dy the spatial 
step size. Empirically it was found that Co should not 
exceed approximately 0.7, which gives a limit of the 
magnitude of the time step dt. 

In the discussion of equation (14) above it was 
said that E should be taken as small as possible. The 
minimal allowable value of E is determined by the 
stability of the explicit solution of equation (14), giv- 
ing E proportional to dt. This is in fact sufficient : since 
the time step is governed by the rapid convection in 
the liquid region, dt is quite small. The allowable 
values of E will typically give an error in satisfying 
equation (8) in the mush of less than 0.15% of the 
typical temperature variation over the mush. 

The difference between the present method and that 
used by Bennon and Incropera [7], and Beckermann 
and Viskanta [8], is mainly that equation (14) is used 
instead of equation (8) here, which allows the system 
to be advanced to a new time level explicitly. Bennon 
and Incropera, and Beckermann and Viskanta. used a 
completely implicit method, where temperature, melt 
fraction, etc. at the new time level were obtained sim- 
ultaneously as solutions to a non-linear system of 
equations. Their treatment allows larger time steps 
than the explicit method, but each step is more costly 
and it is not clear at present which of the two methods 
is the most economical. 

Another point is that Bennon and Incropera [7], 
and Beckermann and Viskanta [8] did not present 
results for the mixture composition. For the melt frac- 
tion, only the boundaries between solid and mush, 
and mush and liquid were presented. Since we are 
interested in the development of macrosegregation, 
the distribution of mixture composition and the evol- 
ution of the melt fraction are of prime importance, 
and are presented in the next section. 

4. RESULTS 

The program described above was used to compute 
the solidification of an ironxarbon alloy in a small 
mould. Values of the relevant physical parameters are 
given in Table 1. Initially the melt was assumed to be 
at rest, and at a uniform temperature and composition. 
At time zero the cooling of the side walls began by re- 
moving uniformly a given power. The top and bottom 
faces were insulated. 

The mould was taken to be rectangular with 10 cm 
height and 20 cm width, i.e. a = b = 10 cm. The initial 
composition was chosen to be c, = 1 wt%. The initial 
temperature was T, = 1463°C. i.e. 5°C above the melt- 
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ing temperature at 1 wt% carbon. In the following 
temperatures will be referred to the melting tem- 
perature of pure iron, so that the initial temperature 
is -73°C and the melting temperature at I wt% 

carbon is -78’ C. Heat was removed from the side 
walls at a rate of Q = 60 kW rn~ ‘. The time for 
removing the latent heat of fusion is thus 3146 s or 
approximately 52 min. Since the specific heat must 
also be removed, the solidification will take at least 
this long. 

The qualitative behaviour of the convection in the 
liquid region is determined by the values of the Prandtl 

number Pr = PC/k. and the Rayleigh number Ru = 

gcr’ATl?/(kp/piC). The appropriate temperature 
AT is the temperature variation over the melt region, 
i.e. the difference between the initial temperature 
and that at the mush-liquid interface, i.e. 5°C. 
The numbers in Table 1 then give the values 
Ra = 3.59 x 10’ and Pr = 0.1742. The flow is thus 
expected to be rapid. but certainly laminar. 

Figure 2 shows velocity vectors and lines of con- 

stant melt fraction at different instants. At t = 200 s, 
Fig. 2(a), a mush occupying about one third of the 

mould half width has appeared on the left-hand side. 
Cooled heavy liquid falls down along the mush surface 
and fills the interior of the mould from the bottom. 
The typical velocity in the boundary layer is a little 
less than 1 cm s ‘. As shown in Fig. 3(a), a vertical 
temperature gradient has been set up in the interior 
(as is common in thermal convection in cavities [ 141). 
Since the composition is virtually unchanged in the 
completely molten region, the interface between 
mushy and liquid regions is kept at the melting tem- 
perature -78 C corresponding to 1 wt% carbon (in 
the following temperatures will be referred to the 
freezing temperature of pure iron). The effect of the 
convection in the completely molten region is thus to 
cool the entire molten region towards -78-C, and to 

eliminate horizontal temperature variations outside 
the boundary layer on the surface of the mushy zone. 
At 1 = 200 s, the liquid metal in the completely molten 
region has already cooled from -73 C to around 
-77 c. 

At t = 400 s, Figs. 2(b) and 3(b). the mush occupies 
approximately two thirds of the mould half width. 
The temperature in the molten part has come quite 
close (within 0.2’C) to the melting temperature 
-78-C. Since the driving temperature difference is 

now rather small, the strength of the convection has 
decreased considerably. The composition is still vir- 
tually unchanged in the molten part. As the tem- 
perature of the melt decreases further. it will become 
even more isothermal, and the entire molten region 
will reach its freezing temperature almost sim- 
ultaneously. A thin mush will then rapidly grow across 
the entire mould. This occurs at around 500 s after 
the start of cooling. 

At t = 800 s, Figs. 2(c) and 3(c), the mush fills 
the mould. It is very thin towards the centre. Since 
velocities are very much smaller in the mush than 

in the molten region, the velocity vectors have been 
magnified in Figs. 2(c), 3(d) and 2(e). There is a slow 
clockwise convection (the opposite sense as compared 
to the earlier convection in the liquid region) through 
the mush. This convection is caused by enrichment of 

the melt. which makes it lighter, due to the exclusion 
of carbon from the growing solid dendrites. A typical 
velocity is now 0.01 mm s ‘, so that the fluid moves 
approximately 1 cm in 1000 s, the order of magnitude 
of the time available before the mould is more or 

less solid. Thus we should expect a rather moderate 
macrosegregation in the finished ingot with a com- 
position deviating appreciably from I”0 in regions l- 
2 cm thick at the top and bottom. 

At t = 1800 s = 0.5 h, the melt fraction increases 
approximately linearly from 0.16 at the left wall to 
0.86 at the centreline, Figs. 2(d) and 3(d). The mesh 
is notably thinner in a region of about 2 cm depth 
below the top, and slightly thicker in a corresponding 
area above the bottom. The clockwise convective cells 

is weaker and is displaced to the right (centre). There 
is virtually no convection where the melt fraction is 
less than 0.4. The presence of macrosegregation is now 
evident in the shapes of the isotherms and the isolines 
for melt fraction : if no segregation had taken place. 
melt fraction would be a function of temperature, and 
so the two families of curves would have the same 
shapes, but this is not the case. 

At t = 3600 s = 1 h, Figs. 2(e) and 3(e), the melt 
fraction is less than 0.2 in most of the mould:The 
largest fraction of melt is present in the top centre. 
There is no appreciable convection due to the low 
permeability in a mush this dense. 

In Fig. 3, the isotherms have been plotted along 
with those for the local liquidus temperature, which 
is obtained from the melt composition according to 
equation (8). The levels of the liquidus isotherms are 
chosen as the levels appearing in the mush, i.e. - 80 C, 

-90 C, . - 180 C. In Figs. 3(a)-(d) the isotherms 
corresponding to the temperature and the liquidus 
temperature coincide. In the mushy region, the tem- 
perature should of course always equal the liquidus 
temperature, and the degree to which it does is a test 
of the accuracy of the numerical scheme. Only in the 
lower left corner of Fig. 3(e) is there a visible differ- 
ence, where the temperature isotherm is practically 
vertical, but the liquidus isotherm bends sharply to 
the left. Comparison with Fig. 2(e) shows however 
that this lower left corner is solid, so that the liquidus 
temperature should be higher than the temperature, 
which is precisely what Fig. 3(e) shows. 

Figure 4 shows isolines of the mixture composition. 
see equation (6) at different times. If no macro- 
segregation occurs at all this composition will remain 
a constant equal to the initial value of 1 O/o, even if the 
solute is very unevenly distributed between the solid 
and liquid phases in the mush. When the ingot is 
completely solidified, c, of course equals c,, and will 
thus show the final distribution of carbon in the 
finished ingot. 
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corresponds to a velocity of 1 cm s- ’ . In (c), (d) and (e) it corresponds to 0.05 mm s- I. 
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FIG. 4. Contours of constant mixture composition c, at different times : (a) t = 400 s ; (b) t = 800 s; (c) 

t = 1800 s ; (d) t = 6000 s. The composition levels are 0.97, 1.03, 1.06 and 1.09%. 

Early, at t = 400 s, Fig. 4(a), only a slight enrich- 
ment and depletion at the top and bottom left respec- 
tively, is seen. Later at t = 800 s, the pattern becomes 
more pronounced. It evolves further and is more or 
less stationary at t = 1800 s. The final plot, Fig. 4(d), 
is at t = 6000 s, when the mould is completely solid. 
The plot of c, in Fig. 4(d) thus shows the final dis- 
tribution of carbon. A moderate segregation is shown 
there, with an enrichment of up to 10% of the original 
composition along a 1-2 cm wide band along the top. 

A corresponding depletion is visible along the lower 
wall. 

The general behaviour that is predicted here agrees 
with experience from real castings. There should cer- 
tainly be an enrichment of solute at the top and 
depletion at the bottom. The magnitude of the final 
segregation is reasonable. One feature that differs 
somewhat from experience is the prediction of a very 
thin mush appearing fairly early in the solidification 
process, extending over the entire mould. This is seen 
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in Figs. 2(b) and (c). In Fig. 2(b) a region where solid 
fraction is below a few per cent extends roughly from 
one third to two thirds of the half width, measured 
from the left wall. In Fig. 2(c). the right half of the 
mould half width is occupied by a very thin mush. 
with solid fraction less than a few per cent. However. 
it is probably not physically reasonable to have a 
mush this thin extending over such large regions. 
Probably the undercooling that indeed is present in 
these regions, should result in the formation of free 
equiaxed crystals instead of a mush attached to the 
wall. Also some undercooling would be required to 
advance the front of the mush into liquid. This could 
be taken into account by prescribing a kinetic law for 

the front of the mushy zone, relating the velocity of 
the front to the undercooling [4. 151. This will be 
investigated in a future study. 

The numerical technique was found to work well. 
The usual problems with computing a flow char- 
acterized by a fairly high Rayleigh number, as well 
as the difficulties arising from the simulation of the 
solidification itself could be surmounted. 

As was discussed above, the phase diagram equa- 
tion (8) is only satisfied approximately, by the use of 
equation (14) instead of equation (8). The validity of 
this is easily checked by comparing T and TJc,) in 
the mush. Isotherms of both T and T, (c, ) are drawn 
in Fig. 3. and they arc hardly distinguishable. The 
magnitude of a typical error may be extracted from 
the results in Fig. 3(d). at t = 1800 s. Comparing T 
and T,(c,) along the mid height _V = 5 cm, shows that 
the maximal error is less than 0.1 C. This should be 

related to the temperature difference over the mould 
which is 68 C in Fig. 3(d), i.e. a relative error below 
0.15%, which is certainly permissible. 

5. CONCLUSIONS 

A numerical method for simulating a freezing alloy 
was presented. It has been applied to the solidification 
of an iron-carbon alloy in a rectangular mould cooled 
from the sides. 

When the cooling starts, a mush begins to grow 
from the cooled wall. The liquid region is cooled to 
the temperature of the mush-liquid interface, i.e. the 
freezing temperature at the undisturbed initial com- 
position The thermal convection in the fluid region 
that is immediately set up. causes the fluid to become 
more and more isothermal. The composition is prac- 
tically unchanged in the liquid region. 

The flow in the mushy region is dominated by solu- 
tal instead of thermal convection. Due to the low 
permeability of the mush, this is roughly 1000 times 
slower. It is caused by enrichment of solute in the 
interdendtitic liquid as the mush freezes, which makes 
the liquid buoyant. The resulting motion is thus in the 
opposite sense compared to the thermal convection. 
It is this slow motion that causes macrosegregation. 
The major effect of the much more rapid convection 
in the molten region is to keep the liquid mixed and 

isothermal, but it does not cause segregation since 
the composition variation is very small in the liquid 
region. In the mush, the exclusion of solute from the 
growing solid dendrites causes considerable cnm- 
position gradients in the liquid. Convection will then 
result in a net transport of solution. i.e. macro- 
segregation. 

The simulation was pursued until the mould was 
completely solid. A depletion of solute is seen near 
the bottom and an enrichment at the top. 

The numerics were found to perform well. giving 
smooth results for both the solid composition and 
the melt fraction. The error in satisfying the phase 
diagram relations were found to be permissibly small. 

One discrepancy with the experience from real casts 
that was observed, was the appearance of a thin mush 
extending over a large part of the mould. In reality 
this does probably not occur. A more accurate mod- 
elling of the interface between the mushy and liquid 
regions would include an undercooling of the dendrite 
tips at the interface between the mushy and the liquid 
regions. This could be described by a kinetic law relat- 
ing the growth velocity of the dendrite tips at the 
interface between the mushy and liquid regions to the 
local undercooling. In a future study the result of 
including such a model in the code, as well as detailed 
comparisons with experimental results, will be reported. 

.4rkno~~le~~erner~r-I am grateful to Professor H. Fre- 
driksson for many discussions that have been instrumental 
for the completion of this work. 
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CALCUL DE LA MACROSEGREGATION DANS UN FORGEAGE FER-CARBONE 

R&am&-On presente une methode num~rique de calcul de macros~gr~gation dam un alliage en solidi- 
fication. La formulation Porte sur la loi de conservation de la masse, de la quantiti de mouvement, de la 
chaleur et du solute et sur les relations thermodynamiques qui gouvernent le changement de phase. Le 
micanisme complet, fonction du temps, est simule jusqu’a la solidification complete. La methode est 
appliquee au cas d’un systeme fer-carbone qui se solidifie dans un nombre rectangulaire bidimensionnel. 
refroidi par les bords. On calcule la convection thermique et solutale pendant la soliditication. L’tvolution 
de la fraction fondue dans le moule est d&rite ainsi que la distribution finale de carbone apres solidification. 

BERECHNUNG VON MAKROSKOPISCHEN ENTMISCHUNGSERSCHEINUNGEN IN 
EISEN-KOHLENSTOFF-SCHMELZEN 

Znsammenfassung-Es wird ein numerisches Berechnungsverfahren fur die makroskopische Entmischung 
in einer erstarrenden Schmelze vorgestellt. Das Model1 beruht ausschIie~lich auf den grundlegenden 
Erhalt~gs~~n fi.ir Masse, Imp&., W&me und Staff, sowie die ~e~~~~~hen Beziehungen fiir den 
Phasenwechsd. Der gesamte zeitlich veranderliche Vorgang wird simuliert-bis hin zur vollstandigen 
Verfestignng. Das Verfahren wird auf den Fall eines Eisen-Kohlenstoff-Systems angewandt, das sich in 
einer zweidimensionalen rechtwinkligen, seitlich gektihlten Form verfestigt. Die temperatur- und kon- 
zentrationsgetriebene Konvektion wahrend der Verfestigung wird berechnet. Die zeitliche Entwicklung 
des Anteils der Schmelze in der Form und die Verteilung des Kohlenstoffs nach der Verfestigung wird 

dargestellt. 

PACqET MAKPOCKOIIU~ECKO~ CEFPET’AL&iM B CHJIABE XEJIE30 - Yl-OJIb 

~Hpexnoneri ~cnerifrbrii Meron pameTa wa~poc~onm~~oil cerperaruar B samepaeeato- 
wehi cmaae. #op~~~3xa 3anaw~ OcHoBaHa Ha ~~MeHT~bu~ 3axoHax coxpaziemin Maccbl, 
minynbca, Tema H pacrnopemioro wec~aa, a Tame tra T~Mo~Ha~~x~ 3aammmcrff~ oripe- 
wmnwmx $aao~nr% uepexon. M~~e~nrpye~cn mcramo~ap& npoxtecc AO nonrroro saraepneeama. 
M~TOA npmfemzrca x cmmme pcem30 - yroJrb, 3aTaepnesamue# B nsyhfeprr0t.l npnb4oyronbrroti 
npecc@opMe, oxnaxuraehro# c 06errx cropoe. Paccsnrbmaro~cn xoane~~rreHbdi neperroc Terma H pacrso- 
pemtoro nemecraa npri 3arnep~enanarr. OIIHWB~WJTCX ~BO~OUH~ JIOJIH pacmaea B npem$op~e H 


